INTEGRAL UNIVERSITY, LUCKNOW DEPARTMENT OF ELECTRICAL ENGINEERING

COURSE: BASIC ELECTRICAL ENGINEERING COURSE CODE: EE103

COURSE OBJECTIVES:

- Knowledge and concept of D.C Circuit Analysis and Network Theorems Circuit.
- Use of Steady State Analysis of Single Phase AC Circuits AC fundamentals.
- Knowledge and concept of Three Phase AC Circuits Three phase system and measuring devices.
- Basic concepts of Power System and Transformer
- Study of Electromechanical energy conversion devices: AC/ DC Machines.

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
CO1	Know about the concept of D.C Circuit Analysis and Network Theorems Circuit.
CO2	Steady State Analysis of Single Phase AC Circuits AC fundamentals.
CO3	Know about concept of Three Phase AC Circuits Three phase system and measuring devices
CO4	Layout of Power System and transformer
CO5	Know about Electromechanical energy conversion devices: AC/ DC Machines

	со	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	P012 Lifelong learning
C01	Know about the concept of D.C Circuit Analysis and Network Theorems Circuit.	3	3	2	1	1	3						3
C02	Steady State Analysis of Single Phase AC Circuits AC fundamentals.	3	3	3	2	1	1						2
CO3	Know about concept of Three Phase AC Circuits Three phase system and measuring devices	3	2	1	1	2	2	3					3
C04	Layout of Power System and transformer	3	2	2	2	3	3						2
C05	Know about Electromechanical energy conversion devices :AC/DC Machines	3	1	1	1	1	2	1					2
	3: Strong contribution, 2: average	e conti	ributio	on, 1: L	OW COI	ntribu	ition						

COURSE: LINEAR NETWORK AND SYSTEMS

COURSE CODE: EE201

	Course Outcomes
CO1	For a given network, would be able to apply the knowledge of mathematics, science, and engineering to the analysis and design of electrical circuits, Identify, formulate, and solve engineering problems in the area electrical circuits & systems.
CO2	For a given system with dc and ac circuits, describe the different network theorems, would be able to apply, solve and verify the solutions using modern tools for lifelong learning like MATLAB.
CO3	For given a system with two port networks described in standard form, would be able to characterize, modeling, analyze, and verify the network in terms of all network parameters.
CO4	For given a system with RL, RC, and RLC circuits, would be able to understand, perform, formulate, and solve the differential equations for RL, RC, and RLC circuits and analyze the characteristics of the system.
CO5	For given a system description, would be able to explore and apply to alternate system description, and implement using basic blocks for network transfer function in s-domain and Two port networks.

					C	Os and	POs MAP	PING				
	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations in complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	PO12 Lifelong learning
C01	3	3	2	3	2	1		1	1	1		2
C02	3	2	3	3	2	2	1	2		1		1
C03	3	3	2	3	2	1						
C04	3	2	2	3	1			1		1		1
C05	3	3	3	3	2	1		1		1		

3: Strong contribution, 2: average contribution, 1: Low contribution

COURSE: ELECTROMECHANICAL ENERGY CONVERSION I COURSE CODE: EE203

COURSE OBJECTIVES:

- Knowledge of principle of electromechanical energy conversion in rotating machines and the laws governing it.
- Determine the emf and torque equation of dc machines. To get knowledge of constructional features and flux flow in dc machines under loading condition. To identify and select different dc machines for different applications.
- Differentiate different dc motor and dc generator on the basis of characteristics.
- To evaluate the performance of dc machines
- To identify different types of transformers and evaluate their performance

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
C01	Knowledge of electromechanical energy conversion in rotating machines
CO2	Analyze the dc machines under loading condition
CO3	Evaluate the performance of dc machines
CO4	Evaluate the performance of single phase transformers
CO5	Knowledge of three phase transformers and transformers used for special applications

	CO	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	PO12 Lifelong learning
	Knowledge of electromechanical energy conversion in rotating machines	3	2	3	1	2	2	1		2		1	1
C02	Analyze the dc machines under loading condition	3	2	2	2	2	1	2		1			1
CO3	Evaluate the performance of dc machines	3	3	2	2	1	2	1		1			1
C04	Evaluate the performance of single phase transformers	3	2	3	2	2	2	1				1	1
	Knowledge of three phase transformers and transformers used for special applications	3	1	1	1								2
	3: Strong contribution, 2: average c	ontrib	ution,	, 1: Lo	ow cont	ribut	ion						

COURSE: SOLID STATE DEVICES AND CIRCUITS COURSE CODE: EE 205

	Course Outcomes
CO1	Analyze and designing concept of special purpose diodes for different types of operation for industrial application purpose. Understand the advancement in conductivity of semiconductors material. Analysis the different regions in which BJT operates and their applications as a switches, amplifiers etc
CO2	Understand the advancement in transistors like JFET, MOSFET, PMOS, NMOS, CMOS etc. and their various types' applications in Industries. Analyze the frequency response of these devices as different amplifier applications. To Understand how the gain of amplifier effected with frequency changes and their applications.
CO3	To develop and analyze the performance of small signal amplifiers and large signal amplifiers (Power amplifiers). To understand and implement the various power amplifier in applications as transmitter and receiver in communication purpose.
CO4	Developing the concept of feedback amplifiers, their different topologies and Implement it for various applications. To analyze their stability and their responses for different applications.
CO5	To analyze the design considerations of the active and passive filters. How to develop the various orders of filters and their industrial applications. To understand the constructional difference and working of various types of oscillators. How the oscillators can be developed and their use in industries.

					COs- PO	Os Mappir	ıg					
	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	PO12 Lifelong learning
COI	3	2	2	2	3	3	1	1	1		2	2
C02	3	3	2	3	2	3	2					
C03	3	2	3	2	2	2	1	1			1	1
C04	3	1	1	1	2	2	2					

C05	3	3	3	3	2	3	2		1	1	1
			3: Strong c	contribution	n, 2: averag	ge contribu	tion, 1: Lo	ow contri	bution		

COURSE: FUNDAMENTALS OF ELECTROMAGNETIC FIELD THEORY

COURSE CODE: EE207

COURSE OBJECTIVES:

- To understand the students about Coordinates systems. To develop ability for analysis of three-dimensional space and obtain the solution of electromagnetic problems by Vector theorems and Operators.
- To analyze the electrostatics problems by applying fundamental law's.
- To realize and examine the magneto statics problems and response the behavior of magnetic fields in different magnetic materials
- To recognize the concepts of Gauss Law and Maxwell equation by investigation in real time domain. To learn the Concepts of Displacement Current and Wave Propagation.
- To execute the analysis of Guided Waves and transmission lines by various parameters and propagation constant .

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
CO1	Given a physical quantity, students shall be able to represent this in vector and scalar
	form, identify type of system, apply vector algebra, and formulate the expression in different coordinates and solve using vector theorems.
CO2	Given a electrostatic problems of passive elements with sources, student shall be able to analyze and evaluate the problems using Gauss laws and Divergence theorem.
CO3	For a given magneto-static situation, student shall be able to generate its analytical response by Biot Savart's law and examine , analyze and evaluate the characteristics by Maxwell's Equation and Boundary Conditions
CO4	For a given Time varying function, students shall be able to identify its characteristics and for Wave Propagation, select suitable design of application of Maxwell's equation, develop various combination for Power by Pyonting Vector and explain the functions of its main components.
C05	Given a Guided Waves and Transmission line, student shall be able to define its parameters, solve/ analyze , and modify its form

	со	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	PO12 Lifelong learning
C01	Given a physical quantity, students shall be able to represent this in vector and scalar form, identify type of system, apply vector algebra, and formulate the expression in different coordinates and solve using vector theorems.		3	2	1	2		1					
l õ	Given a electrostatic problems of passive elements with sources, student shall be able to analyze and evaluate the problems using Gauss laws and Divergence theorem.	3	3	1	1	2							
03	For a given magneto-static situation, student shall be able to generate its analytical response by Biot Savart's law and examine , analyze and evaluate the characteristics by Maxwell's Equation and Boundary Conditions	3	3	1	1	2							
C04	For a given Time varying function, students shall be able to identify its characteristics and for Wave Propagation, select suitable design of application of Maxwell's equation, develop various combinations for Power by Pyonting Vector and explain the functions of its main components.	3	3	2	1	2							
05	Given a Guided Waves and Transmission line, student shall be able to define its parameters, solve, analyze, and modify its form	3	3	2	2	2		1	1				1
	3: Strong contribution, 2: averag	e con	tribut	ion, 1:	Low c	ontril	butio	n					

COURSE: ELECTROMECHANICAL ENERGY CONVERSION II COURSE CODE: EE211 COURSE OBJECTIVES:

- Knowledge of principle of operation of three phase ac motors
- Identify different ac motors on the basis of characteristics
- Analyze different ac machines
- To evaluate the performance of ac machines
- Knowledge of parallel operation of ac generators

COURSE OUTCOMES (CO):

After completion of the course, a student will be able to

COURSE OUTCOME (CO)	DESCRIPTION
C01	Knowledge of different types of three phase induction machines
CO2	Analyze the induction machines performance under loading condition
CO3	Evaluate the performance of single phase ac machines
CO4	Knowledge of three phase synchronous machines
C05	Evaluate the performance of synchronous machines

	СО	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	P012 Lifelong learning
	Knowledge of different types of three phase induction machines	3	2		1								
C02	Analyze the induction machines performance under loading condition	3	2					1					
	Evaluate the performance of single phase ac machines	3	1										2

C04	Knowledge of three phase synchronous machines	3	2								1
C05	Evaluate the performance of synchronous machines	3	2					1			
	3: Strong contribution, 2: avera	ige co	ntribu	tion, 1	l: Low	conti	ributio	n			

COURSE: NUMERICAL ANALYSIS AND APPLICAION

COURSE CODE: EE213

	COURSE OUTCOMES
CO1	Would be able to demonstrate, understanding of common numerical methods and how they are used to obtain approximate solutions to otherwise intractable mathematical problems.
CO2	Would be able to derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of differential equations.
CO3	Would be able to analyze and evaluate the accuracy of common numerical methods.
CO4	Would be able to apply numerical methods to obtain approximate solutions to mathematical problems.
CO5	Would be able to write efficient, well-documented MATLAB code and present numerical results in an informative way.

COs AND POs MAPPING

	FOI Engineering Knowledge	PO2 Problem Analysis	Design/development of solutions	investigations into complex problems	PO5 Modern tool us	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8Ethics	PO9 Individual and Team work	PO10 Communication	Management and Finance	PO12 Lifelong learning
CO1	3	3	3	2	2	1		2	1		1	2
CO2	3	3	2	3	2	1		1	1		1	2
C03	2	3	3	2	1							1
CO4	2	3	3	2	1							
CO5	3	3	3	3	3	2	1	2	2		1	2

COURSE: SIGNAL SYSTEM ANALYSIS COURSE CODE: EE217

COURSE OBJECTIVES:

- Demonstrate an understanding of the fundamental properties of linear systems
- Uses of transform analysis and convolution, to analyze and predict the behavior of linear time invariant systems.

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
CO1	Understand mathematical description and representation of continuous and discrete time signals and systems.
CO2	Develop input output relationship for linear time invariant system and understand the convolution operator for continuous and discrete time system.
CO3	Understand and resolve the signal in frequency domain using Fourier series and Fourier transforms.
CO4	Understand the limitations of Fourier transform and need for Laplace transform and develop the ability to analyze the system in s- domain.
CO5	Analyze the discrete time signals and system using DTFT, DFT and Z

	CO Understand mathematical description and		PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	PO12 Lifelong learning	
C01	Understand mathematical description and representation of continuous and discrete time signals and systems.	3	3		2		1			1	1		1	
C02	Develop input output relationship for linear time invariant system and understand the convolution operator for continuous and discrete time system.	3	3	2	2					1	1		1	
C03	Understand and resolve the signal in frequency domain using Fourier series and Fourier transforms.	3	3	2	2		1			1	1		1	
C04	Understand the limitations of Fourier transform and need for Laplace transform and develop the ability to analyze the system in s- domain.	3	3	2	2		1			1	1		1	
CO5	Analyze the discrete time signals and system using DTFT, DFT and Z	3	3	2	2		1	1		1	1		1	
	3: Strong contribution, 2	2: ave	3: Strong contribution, 2: average contribution, 1: Low contribution											

COURSE: ELECTRICAL ENGINEERING MATERIALS COURSE CODE: EE221

COURSE OBJECTIVES:

- To apply the knowledge of material science engineering.
- To understand the impact of realistic constraints such as economic, environmental, safety, reliability, manufacturability and sustainability.
- To know the properties of conducting, insulating, dielectric and magnetic materials from electrical engineering point of view.
- To realize the potential of semiconducting devices with their application.
- To learn latest techniques, skills, and modern engineering tools necessary for electrical engineering fabrication processes.

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
CO1, CO2 & CO4	To provide students with a thorough understanding of the electrical properties and characteristics of various materials used in the electrical appliances, devices, instruments and in the applications associated with generation, transmission and distribution of electric power.
C03	To provide students with a moderate level understanding of the physics behind the semiconductors.
CO5	An understanding of the electrical engineering material science essential for them to work in different fabrication based industries and also motivate them to do innovative characterization based research while going for higher studies and also to work in R & D with scientific enthusiasm

COURSE: CONTROL SYSTEMS COURSE CODE: EE301

COURSE OBJECTIVES:

- To learn of Transfer function and mathematical modeling of mechanical system.
- To get the knowledge of first order and second order system.
- To gain information of the system.
- To evaluate the stability of the system using Nyquist stability criterion
- To design the compensator and also study of state space analysis.

COURSE OUTCOMES (CO):

After completion of the course, a student will be able to

COURSE OUTCOME	DESCRIPTION
(CO)	
C01	To learn of Transfer function and mathematical modeling of mechanical system.
CO2	To get the knowledge of first order and second order system.
CO3	To gain information of the system.
CO4	To evaluate the stability of the system using Nyquist stability criterion .
C05	To design the compensator and also study of state space analysis.

	СО	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	P012 Lifelong learning
C01	To learn of Transfer function and mathematical modeling of mechanical system.	3	2		1								
C02	To get the knowledge of first order and second order system.	3	2		1								
C03	To gain information of the system.	3	2										1

C04	To evaluate the stability of the system using Nyquist stability criterion .	1	3		2						1
C05	To design the compensator and also study of state space analysis.	2	2	3							1
	3: Strong contribution, 2: a	averag	ge con	tributi	on, 1: I	Low c	contri	bution	l		

COURSE: POWER ELECTRONICS COURSE CODE: EE 303

	COURSE OUTCOMES
CO1	Understand and analyze the concept, design, technique, advancement and application of Bipolar junction transistor, Power Metal oxide semiconductor field effect transistor, Insulated gate bipolar junction transistor, operation of Silicon controlled rectifier (SCR), Firing circuits of Thyristor, Turn on methods of a Thyristor and Thyristor turn-off process.
CO2	Understand and analyze the concept, design, technique, advancement and application of Protection of Thyristor, Series and parallel operation of SCR, Gate turn off (GTO) thyristor. Understand and analyze the concept and knowledge advancement in Gate characteristic of an SCR, Dynamic characteristics of SCR, Two transistor analogy, Rating of an SCR
CO3	Understand and analyze the concept, design, technique, advancement and application of single phase half wave and full wave controlled rectifiers with different types of load, Effect of source impedance on the performance of full wave converter, Dual converter, three phase converters and cyclo-converters
CO4	Understand and analyze the concept, design, technique, advancement and application of Single phase bridge inverters (half and full wave), Pulse width modulation (PWM) inverters, Series inverter, Parallel inverter, Mc-Murray half bridge inverter, Three phase inverter.
CO5	Understand and analyze the concept, design, technique, advancement and application of choppers, chopper circuits, Multi quadrant choppers, Commutation of choppers, Switched mode power supplies.

				C	O- PO	MAPPI	NG					
	P01 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	P010 Communication	PO11 Project Management and Finance	P012 Lifelong learning
CO1	3	3	2	1	3	3	2	2	2	1	1	2
CO2	3	3	2	1	3	3	2	2	2	1	1	2
CO3	3	3	2	1	3	3	2	2	2	1	1	2
CO4	3	3	2	1	3	3	2	2	2	1	1	2
CO5	3	3	2	1	3	3	2	2	2	1	1	2
	3	Strong (Contribu	tion, 2:N	Ioderate	e Contrib	oution, 1	:Weak (Contribut	tion	1	1

COURSE: DIGITAL CIRCUITS AND SYSTEMS

COURSE CODE: EE305

COURSE OBJECTIVES:

- To understand number representation and conversion between different representation in digital electronic circuits.
- Became familiar with the digital signal, positive and negative logic, Boolean algebra, logic gates, logical variables, the truth table, number systems, codes, and their conversion from one to others.
- To analyze logic processes and implement logical operations using combinational logic circuits.
- To understand competence in Combinational Logic Problem formulation.
- To understand concepts of sequential circuits and to analyze sequential systems in terms of state machines.
- To understand competence in analysis of synchronous and asynchronous sequential circuits.
- To understand characteristics of memory and their classification.
- To understand concept of Programmable Devices, PLA, PAL, PLD and FPGA and implement digital system.
- To impart how to design Digital Circuits.

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
C01	Convert different type of codes and number systems which are used in digital communication
	and computer systems. Develop a digital logic and apply it to solve real life problems.
CO2	Employ the codes and number systems converting circuits and Compare different types of
	logic families which are the basic unit of different types of logic gates in the domain of economy, performance and efficiency.
CO3	Analyze, design and implement combinational and sequential logic circuits.
CO4	Analyze different types of digital electronic circuit using various mapping and logical tools and know the techniques to prepare the most simplified circuit using various mapping and mathematical methods.
CO5	Design different types of with and without memory element digital electronic circuits for particular operation, within the realm of economic, performance, efficiency, user friendly and environmental constraints.
CO6	Classify different semiconductor memories. Assess the nomenclature and technology in the area of memory devices and apply the memory devices in different types of digital circuits for real world application.

СО	${f P01}$ Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	POS Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	PO 12 Lifelong learning
CO1	3	2	2	2		1	2	1		1		1
CO2	2	3		2	2	1	3		1	1	1	1
CO3	3	3	3	2	2						1	1
CO4	2	3	3	2		2	2		1	2	3	
CO5	1	2	2	2	2	2		3	1		1	
CO6		2		2		2		2			1	1
		3:	Strong con	tribution, 2	2: average co	ontribution,	, 1: Low co	ontributio	n			

COURSE: POWER SYSTEM-I COURSE CODE: EE-307

COURSE OBJECTIVES:

- To get knowledge of Power System Components and Transmission Lines
- To get knowledge of inductance and capacitance of Over-Head Transmission Lines
- To attain knowledge of Corona and Overhead line Insulators
- To study about Mechanical Design of transmission line and Insulated cables
- To have the knowledge of Electrical Design of Transmission Line and Neutral grounding

COURSE OUTCOMES (CO):

After completion of the course, a student will be able to

COURSE OUTCOME (CO)	DESCRIPTION
C01	Understand the Power System Components and Transmission Lines
CO2	Analyse the inductance and capacitance of Over-Head Transmission Lines
CO3	Understand the phenomenon of Corona and Overhead line Insulators
CO4	Having knowledge of Mechanical Design of transmission line and Insulated cables
C05	Design Electrical Transmission Line and Neutral grounding

	СО	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	POS Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	PO12 Lifelong learning
CO1	Understand thePower System Components and Transmission Lines	3	2	1	1								1
CO.2	Analyse the inductance and capacitance of Over-Head Transmission Lines	3	3		1								1
CO3	Understand the phenomenon of Corona and Overhead line Insulators	3	3	1	2								1
COA	Having knowledge of Mechanical Design of transmission line and Insulated cables	3	2	3				3		3	2	2	1
202	Design Electrical Transmission Line and Neutral grounding	3	1	3	2	2	2			3	2	2	2
	3: Strong contribution, 2: averag	e cont	ributic	on, 1: L	OW COI	ntribu	tion	<u>.</u>					

COURSE: POWER SYSTEM-II COURSE CODE: EE-311

COURSE OBJECTIVES:

- Representing elements of a power system including generators, transmission lines, and transformers.
- Understand the functioning of a synchronous machine and represent it with simple models.
- Perform Fault analysis for a balanced three-phase power system.
- Analyze multi-node power systems using an admittance matrix or impedance matrix representation of the power system.
- Factor the admittance matrix to obtain a solution of the network voltages.
- Understand the formulation of the power flow problem, and have the ability to cast any given system in this framework.
- Solve power flow problems by the application of Newton method & Gauss seidel
- Perform Steady-state analysis for a balanced three-phase power system.
- Reflection and Transmission of travelling waves under different line loadings
- Protection of equipments and line against travelling waves

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
CO1	Representation of Elements in Electric Power System in Per-Unit system and Analysis of Symmetrical faults.
CO2	Analysis of Unsymmetrical faults.
CO3	Understanding the formulation of the power flow problem and to cast any given system in this framework.
CO4	Understanding the concept of steady state and transient stability.
CO5	Need of Protection of equipments and line against travelling waves.

СО	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	PO12 Lifelong learning
CO1	3	3	2								2	2
CO2	3	3	2	2	2							
CO3	3	3	1	2	2							2
CO4	3	2	3	2	3					2	2	
CO5	3	3	3			2	1				2	2
	3: St	rong conti	ributio	n, 2: ave	erage o	contril	oution,	1: Lov	v conti	ribution		

COURSE: Microprocessor and Peripheral Devices COURSE CODE: EE-313/ EEE-313 COURSE CREDIT: 4

PREREQUISITES:

Subject	Description	Level of study
Digital Circuits &	Digital Circuits	UG
Systems EE305		

COURSE OBJECTIVES:

- Knowledge of I/O devices and memories
- To get knowledge of architecture of 8085 and 8086
- To attain knowledge of different instruction set of 8085 and 8086
- To study about different types of Programmable Peripheral Interface
- To have the knowledge of analog to digital and digital to analog converter chips

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
C01	Understand the basics of microprocessor
CO2	Understand the architecture of 8085 and 8086
C03	Knowledge of instruction set of 8085 and 8086
CO4	Knowledge of programmable peripheral interface
C05	Knowledge of analog to digital and digital to analog converter

	СО	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	PO12 Lifelong learning
C01	Understand the basics of microprocessor	3			1	1	1	1					3
C02	Understand the architecture of 8085 and 8086	3	2	2	2	2	1						3
CO3	Knowledge of instruction set of 8085 and 8086	3	2	2	2	2	1						3
C04	Knowledge of programmable peripheral interface	3	2	2	2	2	1	1					3
C05	Knowledge of analog to digital and digital to analog converter	3	1	1	1	1	1	1					3
	3: Strong contribution, 2: average contribution, 1: Low contribution												

UNIT	CONTENT	СО
Ι	Introduction of Microcomputer System:	1
	General definition of minicomputer, microprocessor, CPU(central processing unit),	
	I/O(Inputoutput) devices, clock, memory, bus architecture, tri-state logic, address	
	bus, data bus and control bus. Semiconductor Memories: Development of	
	semiconductor memory, internal structure and decoding, memory read and write	
	timing diagrams, ROM (Read-only memory), RAM (Random-access memory).	
II	Architecture of 8-bit Microprocessor:Introduction to 8085 and 8086	2
	microprocessor, Pin description and their internal architecture.	
	Operation and Control of Microprocessor : Timing and control unit, memory	
	read/write machine cycles, Input-output read/write machine cycles, interrupt	
	acknowledge machine cycle.	
III	Instruction Set:	3
	Addressing modes- Data transfer, arithmetic, logical, branch, stack and machine	
	control groups of instruction set, unspecified flags and instructions, assembly	
	language programming, assembler directives, subroutines.	
IV	Interfacing: Interfacing of memory chips, Interfacing of Input-output devices,	4
	Input-output addressing, Input-output memory mapped schemes, 8255	
	Programmable Peripheral Interface, 8257 Direct memory access Controller, 8259	
	Interrupt priority Control, 8253/8254 Programmable timer/counter with modes of	
	operation.Interrupts: Interrupt structure of 8085 microprocessor.	
V	Programmable Peripheral Interface:	5
	Intel 8255 pin configuration, internal structure of a port bit, modes of operation, bit	
	SET/RESET feature, analog to digital converter and digital-to-analog converter	
	chips and their interfacing.Programmable Interval Timer: Intel 8253, pin	
	configuration, internal block diagram of counter and modes of operation, counter	
	read methods.	

References:

1.B.Ram, "Fundamentals of Microprocessor and Microcomputer", Dhanpat Rai Publication, 4th Edition.2008

2. M.Rafiquzzaman, "Microprocessors and Applications", John Wiley & Sons ,2008

3. Hall D.V., "Microprocessor and Interfacing-Programming and Hardware", 2nd Ed., Tata McGraw-Hill Publishing Company Limited, reprinted 2008

4. Gaonkar R.S., "Microprocessor Architecture, Programming and Applications", 6th Ed., Penram International, 2013.

COURSE: PROCESS INSTRUMENTATION COURSE CODE: EE323

COURSE OBJECTIVES:

- Knowledge of different process ant its characteristics.
- Understanding of different control loops used in process.
- Study and analysis of feedback control system and its applications.
- Applications and design of multi-loop control system.
- Concepts and design of multivariable control systems.

COURSE OUTCOMES (CO):

After completion of the course, a student will be able to

COURSE OUTCOME (CO)	DESCRIPTION
CO1	Know about different process ant its characteristics.
CO2	Understand different control loops used in process
CO3	Use feedback control system.
CO4	Design of multi-loop control system.
CO5	Design of multivariable control systems.

со	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	POS Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	PO12 Lifelong learning
CO1	3	1	1	1	1	3	1				1	3
CO2	3	2	2	1	3	2	1				1	2
CO3	3	2	2	1	3	3	3				1	3
CO4	3	2	3	2	3	3	3				1	3
CO5	3	3	3	3	3	3	2				1	3
		3: Str	ong contribu	tion, 2: avera	age contr	ibution, 1:	Low contr	ibution		•		

COURSE: CONVENTIONAL & CAD OF ELECTRICAL MACHINES

COURSE CODE: EE325

COURSE OBJECTIVES:

- To develop knowledge on principles of design of static and rotating machines.
- To understand the fundamental concepts of design process, designing of main dimensions & cooling systems of transformers and rotating machine.
- To provide advanced knowledge and understanding about the construction and design of the electrical machines.
- To provide the basis and the methodologies to correct a design of the electrical machines (transformers, rotating AC machines and DC machines).
- To understand the design optimization of the electrical machine for industrial, automotive and aerospace applications.

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
CO1	Student understands the basic concept of design, limitations faced in the designing process, and classification & importance of Insulating materials.
CO2	Student is able to understand the design concepts of transformers and know about how to design the core, yoke & windings.
CO3	Upon completing the course, student is able to understand the factors affecting the size of rotating machines and design of core & armature in DC machines along with selection of frame size.
CO4	Student is able to understand the rotor design of Induction motor and field system design of Synchronous machines & DC machines along with problem solving techniques related to design.
CO5	Student understands the importance of Computer aided design and different approaches based on their applications along with the concept of optimization.

со	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	P012 Lifelong learning
CO1	2	2	2									2
	3	3	2									3
CO2	3	3	2	2	2						2	
CO3	3	3	1	2	2						2	2
CO4	3	2	3	2	3					2	2	
CO5	2	2	2			2	2					
3: Strong contribution, 2: average contribution, 1: Low contribution												

INTEGRAL UNIVERSITY, LUCKNOW DEPARTMENT OF ELECTRICAL ENGINEERING

COURSE: MODERN POWER SYSTEM COURSE CODE: EE-331/ EEE-331 COURSE CREDIT: 4

PREREQUISITES:

Subject	Subject Description							
Power System I EE307	Basic of Power System	UG						

COURSE OBJECTIVES:

- Knowledge of modelling of different component of power system
- To get knowledge of load frequency control technique
- To attain knowledge of modelling of three phase transmission line
- To study about different types of power electronic control for Load flow
- To have the knowledge of power distributors.

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
C01	Understand the modelling of power system components
CO2	Understand the load frequency control
C03	Knowledge of three phase transformer and transmission line
CO4	Knowledge of load flow
C05	Knowledge of power distributors

	СО	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	PO12 Lifelong learning
C01	Understand the modelling of power system components	3	3	3	1	1	1	1					3
S Understand the load frequency control		3	3	3	2	2	1						3
	S Knowledge of three phase transformer and transmission line		3	3	2	2	1						3
C04	Knowledge of load flow	3	2	2	2	2	1	1					3
CO5	Knowledge of power distributors	3	1	1	1	1	1	1					3
	3: Strong contribution, 2: average contribution, 1: Low contribution												

COURSE: RENEWABLE ENERGY TECHNOLOGY COURSE CODE: EE343

COURSE OBJECTIVES:

- To understand the students about Energy systems. To develop ability for analysis of sustainability.
- To analyze the sun as source of energy, by applying fundamental law's.
- To realize and examine the hydro power potential, hydropower generation and distribution, in different system.
- To recognize the Basics & Power Analysis, Wind resource assessment, by investigation in real time domain.
- To execute the analysis of potential of nuclear energy, with hybrid energy systems.

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
CO1	Given an energy systems and quantifying energy students shall be able to represent this in comparison to various conventional Fossil fuels, identify type of system, apply vector algebra, and formulate the Remedies & alternatives for fossil fuels.
CO2	Given a Modeling of Solar Energy with sources, student shall be able to analyze theory of solar cells, solar radiation, solar characteristics and limitations.
CO3	For a Wind Energy systems, student shall be able to generate its analytical response and resource assessment, analyze and evaluate the characteristics by Power Conversion Technologies.
CO4	For a given Hydro power, students shall be able to identify its characteristics and for Generation and Distribution, select suitable design of application of Mini and Micro-hydel Power with various combination for System
CO5	Given a Nuclear Energy system, student shall be able to define its fuel enrichment, different types of nuclear reactors, nuclear waste disposal, solve/ analyze, and modify Integrated Energy systems,

	СО	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	POIL Project Management and Finance	PO12 Lifelong learning
C01	Given an energy systems and quantifying energy students shall be able to represent this in comparison to various conventional Fossil fuels, identify type of system, apply vector algebra, and formulate the Remedies & alternatives for fossil fuels.	3	3	2									
C02	Given a Modeling of Solar Energy with sources, student shall be able to analyze theory of solar cells, solar radiation, solar characteristics and limitations.	3	3	2	2	2							
CO3	For a Wind Energy systems, student shall be able to generate its analytical response and resource assessment, analyze and evaluate the characteristics by Power Conversion Technologies.	3	3	1									2
C04	For a given Hydro power, students shall be able to identify its characteristics and for Generation and Distribution,, select suitable design of application of Mini and Micro-hydel Power with various combination for System		2	3	2	3					2	2	
C05	Given a Nuclear Energy system, student shall be able to define its fuel enrichment, different types of nuclear reactors, nuclear waste disposal, solve/ analyze, and modify Integrated Energy systems,	3	3	3			2	1					
	3: Strong contribution, 2: Average contribution, 1: Low contribution												

COURSE: POWER ELECTRONICS BASED CONVERTERS DESIGN COURSE CODE: EE345

COURSE OBJECTIVES:

- Knowledge and concept of non-isolated DC-DC converters.
- Analysis & Design of Isolated Converters.
- Knowledge and concept of AC Regulators.
- Analysis & Design of Self Driven Inverters.
- Designing of Soft switching Converters.

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
C01	Know about the concept of non-isolated DC-DC converters.
CO2	Analyze & Design Isolated Converters.
CO3	Know about concept of AC Regulators.
CO4	Analyze & Design Self Driven Inverters.
CO5	Design Soft switching Converters.

	СО	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	PO12 Lifelong learning
C01	Know about the concept of non-isolated DC-DC converters.	3	1	1	1	1	3	1					3
C02	Analyze & Design Isolated Converters.	3	2	3	1	3	3	1					3
CO3	Know about concept of AC Regulators.	3	1	1	1	1	3	1					3
C04	Analyze & Design Self Driven Inverters.	3	2	3	1	3	3	1					3
C05	Design Soft switching Converters.	3	2	3	3	3	3	2					2
	3: Strong contribution, 2: average contribution, 1: Low contribution												

COURSE: POWER SYSTEM PROTECTION COURSE CODE: EE 401

COURSE OBJECTIVES:

- To learn the basics of relays .
- To get the knowledge of relay application.
- To gain the knowledge of protection of Transmission line.
- To study the different types of circuit breaker.
- To gain the knowledge of protection of Alternator.

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
CO1	Learn the basics of relays.
CO2	Acquire knowledge of relay application
C03	Acquire knowledge of protection of Transmission line.
CO4	Knowledge the different types of circuit breaker.
C05	Gain the knowledge of protection of Alternator

со	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	POS Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	PO12 Lifelong learning
CO1												
	3			1								1
CO2	3	2		1								
CO3	3	2										1
CO4	3	2		2								1
CO5	3	1	2									1
	3: Strong contribution, 2: average contribution, 1: Low contribution											

COURSE: ELECTRIC DRIVES

COURSE CODE: EE403

COURSE OBJECTIVES:

- Describe the structure of Electric Drive systems and their role in various applications such as flexible production systems, energy conservation, renewable energy, transportation etc., making Electric Drives an enabling technology.
- Analyze the operation of motor drives system to satisfy four-quadrant operation to meet mechanical load requirements.
- Understand the basic principles of power electronics in drives using switch-mode converters and pulse width modulation to synthesize the voltages in dc and ac motor drives.
- Describe the operation of induction machines in steady state that allows them to be controlled in induction-motor drives.
- Learn speed control of induction motor drives in an energy efficient manner using power electronics.
- Learn the basic operation of stepper motors and switched-reluctance motor drives.
- Realize an appreciation of power quality issues in powering electric drives.

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
C01	Conceptualize fundamental elements of drive systems, design important elements of a
	drive system, understand the multi-quadrant operation and analyze it for different
	types of operation.
CO2	Understand and evaluate dynamics of motor-load combination, Develop the thermal
	model of a motor, Analyze steady state and transient state stability, select and
	determine the motor power rating for various duty cycles.
CO3	Analyze and perform the dynamics during starting and braking of DC and AC motor,
	evaluate energy loss and implement various methods to reduce it, examine, develop
	and solve various energy relations during starting and braking.
CO4	Acquire detailed knowledge of DC Shunt and Series motor operation using
	generalized machine theory, Apply the concepts of AC-DC and DC-DC Converters to
	evaluate and enhance the performance of steady and transient state operation,
	Implement speed control and current control loops of a DC Motor drive. Understand
	how DC Drives may pollute the power supply and analyze how to mitigate such
	pollution.
CO5	Understand the working of various phase controlled converters used in AC Drives.
	Learn the working principle and design details of frequency controlled converters
	used in induction motor drives. Analyze and perform the modeling and controlling
	CSI based drives.

со	ယ PO1 Engineering Knowledge	ယ PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	2 PO5 Modern tool usage	PO6 Engineer and Society	– PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	PO12 Lifelong learning
CO1	3	3	1	1	2		1					
CO2	3	3	2	1	2							
CO3	3	3	2	2	2	2						
CO4	3	3	3	1	2	1		1			1	
CO5	3	3	3	2	2		1		1		1	
	3: Strong contribution, 2: average contribution, 1: Low contribution											

COURSE: APPLICATION OF POWER ELECTRONICS TO POWER SYSTEM COURSE CODE: EE 423

	Course Outcomes
CO1	To Analyze the steady state and dynamic problems in AC transmission system. To understand about the FACTs controllers and their types and their applications in AC system.
CO2	To understand what are the parameters to control and improve power in transmission system and these parameters are controlled and improve by followings shunt controllers like series controllers, shunt controller, combine series shunt controller, and phase angle regulators. To understand their working, design and its implementations in AC system, applications and its advantages in AC system.
CO3	Analysis the modeling of different series, shunt controllers and analysis its control strategies to improve AC system stability.
CO4	To analyze what are the power quality problems in distribution system? To understand the harmonics and how it does affects the power flow and power quality. To understand what are the harmonic propagation and resonance.
CO5	To understand, analyze and implementation to mitigate the harmonics. To analysis the different types of filters to mitigate the harmonics. To analysis how the voltage sags and swells, voltage flicker arises in the AC system due to harmonics and its calculation.

			C	0- PO M	APPINO	Ĵ						
	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	P010 Communication	P011 Project Management and Finance	P012 Lifelong learning
CO1	3	2	1	1	2	2	1					
CO2	3	2	3	2	3	3	2	1	1	1	2	2
CO3	3	3	3	2	3	2	2				1	
CO4	3	1	1	2	2	2	2					
CO5	3	2	2	2	2	2	2	1	1		2	3
		1	3:Strong	Contribu	tion, 2:N	Ioderate C	ontribution	i, 1:Weak	Contribut	ion		I

COURSE: POWER SYSTEM DYNAMICS COURSE CODE: EE427

COURSE OBJECTIVES:

- To understand the students about dynamics of Power systems. To develop ability for analysis of system stability and obtain the solution of transient problems.
- To analyze the modeling of synchronous machine by applying fundamental law's.
- To realize and examine the excitation systems and response the behavior of prime mover controllers in different system.
- To recognize the concepts of dynamics of synchronous generator Connected to Infinite Bus by investigation in real time domain.
- To execute the analysis of transient and voltage stability by various parameters and comparison with angle stability.

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
CO1	Given a Power System Dynamics Problems, students shall be able to represent this in various conventional models, identify type of system, apply vector algebra, and formulate the expression in different System Model and solve using mathematical terms.
CO2	Given a Modeling of Synchronous Machine with sources, student shall be able to analyze System Simulation and evaluate the Steady State Performance using Equivalent Circuit of Synchronous Machine.
CO3	For a Excitation systems & Prime Mover Controllers, student shall be able to generate its analytical response by Standard Block Diagram and examine, analyze and evaluate the characteristics by State Equations and Load Modeling.
CO4	For a given System Model, students shall be able to identify its characteristics and for Stator Equation, select suitable design of application of Network Equation, develop various combination for System Simulation Small Signal Analysis with Block Diagram Representation for Single Machine System,.
CO5	Given a Modeling and Analysis of Transient and Voltage Stability, student shall be able to define its Stability Evaluation, solve/ analyze, and modify energy functions for direct stability evaluation;

	СО	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Suctainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	POII Project Management and Finance	PO12 Lifelong learning
C01	Given a Power System Dynamics Problems, students shall be able to represent this in various conventional models, identify type of system, apply vector algebra, and formulate the expression in different System Model and solve using mathematical terms.		3	2									
C02	Given a Modeling of Synchronous Machine with sources, student shall be able to analyze System Simulation and evaluate the Steady State Performance using Equivalent Circuit of Synchronous Machine.		3	2	2	2							
CO3	For a Excitation systems & Prime Mover Controllers, student shall be able to generate its analytical response by Standard Block Diagram and examine, analyze and evaluate the characteristics by State Equations and Load Modeling.	3	3	1									2
C04	For a given System Model, students shall be able to identify its characteristics and for Stator Equation, select suitable design of application of Network Equation, develop various combination for System Simulation Small Signal Analysis with Block Diagram Representation for Single Machine System	3	2	3	2	3					2	2	
CO5	Given a Modeling and Analysis of Transient and Voltage Stability, student shall be able to define its Stability Evaluation, solve/ analyze, and modify energy functions for direct stability evaluation.	3	3	3			2	1					
	3: Strong contribution, 2: average contribution, 1: Low contribution												

COURSE: UTILIZATION OF ELECTRICAL ENERGY AND TRACTION COURSE CODE: EE431

COURSE OBJECTIVES:

- To impart the detail knowledge of different types of Electrical Heating
- To understand about Electrical Welding, Refrigeration and Air conditioning.
- To study different definitions of Illuminations and its Laws
- To understand types of Electric Traction, system of track electrification, Tractive effort.
- Study of salient features of traction Drives. To impart knowledge of Diesel Electric Traction

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
C01	Conceptualize fundamental elements of electrical heating, designing of different
	elements used in electrical heating, understand working and application of different
	type of furnaces.
CO2	Understand different types and working of electrical welding, understand different
	instrument used for electrical welding. Acquire detailed knowledge electro-deposition,
	laws of electrolysis and its application in different field.
CO3	Acquire knowledge of different Laws of Illuminations, Develop the designing skill for
	indoor and outdoor lighting system. Understand construction and operation of
	Refrigeration and air conditioner system, Analyze the electric circuit and Learn the
	maintenance of domestic refrigerator.
CO4	Understand operation, mechanism and types of track electrification used of a traction
	system. Acquire detailed knowledge of different terminology used in electric traction.
CO5	Acquire knowledge of different motor drives operation, Analyze starting, braking and
	of different type of motor drives used for traction Apply the concepts of AC-DC and
	DC-DC Converters for traction drives, Implementation of bridge transition speed
	control of a DC traction drive. Understand the concept of diesel electric traction.

СО	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	POS Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	PO12 Lifelong learning
CO1	3	3	3	1	2	2	2			2		1
CO2	3	3	2	1	2	2	2			2		1
CO3	3	3	3	3	3	3	3	2	3	3	1	2
CO4	3	3	3	1	1	3		1		1		2
CO5	3	3	2	2	1	2	1	1	1	2		3
	3: Strong contribution, 2: average contribution, 1: Low contribution											

COURSE: POWER QUALITY & MITIGATION COURSE CODE: EE433

Course Objective :

- Students will comprehend power quality problems and their sources.
- Students will be able to apply power and power quality monitoring algorithms
- Students will be able to propose solutions for power quality problems

Course Outcomes :

- **CO1:** Classify the power quality problems
- **CO2:** Analyze voltage sag problems and suggest preventive techniques
- CO3: Identify the harmonic sources and the effects of harmonic distortion
- **CO4: Identify** the DG sources; **analyze** the power quality issues and operating conflicts when DG is interconnected to the grid.
- CO5: Understand reasons for grounding and describe the wiring & grounding problems and solutions

	PO1Engineering knowledge	PO2 Problem analysis	PO3 Design /Development of solutions	PO4 Conduct investigations into complex problem	PO5 Modern tool usage	PO6 Engineer & society	PO7 Environment &sustainablity	PO8 Ethics	PO9 Individual & Team work	PO10 Communication	PO11 Project Management & Finance	PO12 Lifelong Learning
CO1	3	3	3	1								
CO2	3	3	3	1					3		3	3
CO3	3	3	3						3		3	3
CO4	3	3	3					2				
CO5	3	3	3					2			3	2
	1		3. S	trong Cor	ntribution 2	. Moderate	Contributio	on 1.Wea	k Contribu	tion		

COURSE: HIGH VOLTAGE DC TRANSMISSION

COURSE CODE: EE435

COURSE OBJECTIVES:

- To introduce students with the concept of HVDC Transmission system.
- To familiarize the students with the HVDC converters and their control system.
- To expose the students to the harmonics and faults occur in the system and their prevention.
- To Develop the knowledge of HVDC transmission and HVDC converters and the applicability and advantage of HVDC transmission over conventional AC transmission.
- To Formulate and solve mathematical problems related to rectifier and inverter control methods and learn about different control schemes as well as starting and stopping of DC links
- To Analyze the different harmonics generated by the converters and their variation with the change in firing angles.
- To Develop harmonic models and use the knowledge of circuit theory to develop filters and assess the requirement and type of protection for the filters.
- To Study and understand the nature of faults happening on both the AC and DC sides of the converters and formulate protection schemes for the same.
- To Review the existing HVDC systems along with MTDC systems and their controls
- To Recognize the need to follow the advancements in both the existing systems and HVDC systems and determine the most economic coexistence of both.

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
CO1	Choose intelligently AC and DC transmission systems for the dedicated application(s).
CO2	Identify the suitable two-level/multilevel configuration for high power converters.
C03	Select the suitable protection method for various converter faults.
CO4	Decide the configuration for harmonic mitigation on both AC and DC sides.
CO5	Identify suitable reactive power compensation method and basics of MTDC system.

СО	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	P012 Lifelong learning
CO1	3	3	2								2	
CO2	3	3	2	2	2							
CO3	3	3	1									2
CO4	3	2	3	2	3					2	2	
C05	3	3	3			2	1				2	
	3:	Strong co	ontributio	on, 2: ave	rage con	tribution,	, 1: Low	contribu	ution			

COURSE: HIGH POWER SEMICONDUCTOR DEVICES COURSE CODE: EE439

	COURSE OUTCOMES
CO1	To understand the construction and working of power switches like diode, transistor, IGBT and their practical applications in industries.
CO2	Analysis of different types thyristors their practical implementation. To understand the different methods to turn it on and their blocking characteristics.
CO3	To understand the structure and operation of MOSFET, Silicon IGBT, Silicon carbide IGBT and its practical application in electrical devices for industries.
CO4	To understand the operation and structure of VMOS and DMOS and its practical application in electrical devices for industries.
CO5	To understand the operation and structure of silicon MCT, BRT,EST, Gallium Nitride devices and its practical application in electrical devices for industries.

	CO- PO Mapping													
	P01 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	P012 Lifelong learning		
CO1	3	1	1	1	1	2	2	1						
CO2	3	2	3	2	2	3	1	1	1					
CO3	3	2	3	2	2	2	2	1	1		1		2	
CO4	3	2	3	2	3	2	2	1	1		3		2	
CO5	3	2	3	2	3	2	2		1		3		2	
	1	3. Stro	ng Contr	ibution 2	2. Mode	erate Co	ontributio	on 1.Wea	k Conti	ibution	 			

COURSE : FLEXIBLE AC TRANSMISSION SYSTEMS(FACTS)

COURSE CODE: EE441

Course Objective : To familiarize power engineers about the Flexible AC Transmission devices and their applications in power systems with respect to active/reactive power control.

Course Outcomes :

CO1: Understand the importance of controllable parameters and benefits of FACTS controllers.

CO2: Know the significance of shunt, series compensation and role of FACTS devices on system control.

CO3: Analyze the functional operation and control of GCSC, TSSC and TCSC.

CO4: Describe the principles, operation and control of UPFC and IPFC.

CO\PO	PO1Engineering knowledge	PO2 Problem analysis	PO3 Design /Development of solutions	PO4 Conduct investigations into complex problem	PO5 Modern tool usage	PO6 Engineer & society	PO7 Environment &sustainablity	PO8 Ethics	PO9 Individual & Team work	PO10 Communication	PO11 Project Management & Finance	PO12 Lifelong learning
CO1	3	3	3	1		1			2	1		
CO2	3	3	3	1			3		3	1	3	
CO3	3	3	3	1					3	1	3	1
CO4	3	3	3	1					3	1		1

COURSE: SPECIAL ELECTRICAL MACHINE COURSE CODE: EE443

COURSE OBJECTIVES:

- Knowledgeof slip power recovery scheme
- To get knowledge of constructional features of special machines such as single phase synchronous motor and ac servomotor.
- To attain knowledge of working of stepper motorand switched reluctance motor and there drive circiuits
- To study about different types of magnets and there application in different machines
- To have the knowledge of working and application of linear induction motor and universal motor.

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
C01	Evaluate the performancespecial induction motors and slip power recovery schemes
CO2	Analyze the performance of single phase synchronous motor and ac servomotor
CO3	Evaluate the performance of drive circuit of stepper motors
CO4	Knowledge of permanent magnet machines
CO5	Knowledge of linear induction motor and universal motor used for special applications

	СО	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	P012 Lifelong learning
C01	Evaluate the performancespecial induction motors and slip power recovery schemes	3	2	2	1								1
C02	Analyze the performance of single phase synchronous motor and ac servomotor	3	2										1
CO3	Evaluate the performance of drive circuit of stepper motors	3	3	2	2								1
C04	Knowledge of permanent magnet machines	3	2										1
C05	Knowledge of linear induction motor and universal motor used for special applications	3	1										2
	3: Strong contribution, 2: average contribution, 1: Low contribution												

COURSE: ELECTRICAL SYSTEM & SUBSTATION DESIGN COURSE CODE: EE 445

COURSE OBJECTIVES:

- To develop knowledge of general aspects of electrical system design
- Having Knowledge of Medium and HV installations
- Having knowledge of installation of transformers, Switchgears and protective devices
- To get knowledge of Design of illumination systems
- To get the knowledge of different types of Substation, Substation equipment and its function.

COURSE OUTCOMES (CO):

COURSE OUTCOME (CO)	DESCRIPTION
C01	Understands the general aspects of electrical system design
CO2	Selection of main distribution board; Sub distribution board; MCCB, ELCB, MCB and cables forsub circuits
CO3	Understand installation of transformers, Switchgears and protective devices
CO4	knowledge of Design of illumination systems
CO5	knowledge of types of Substation, Substation equipment and its function.

	СО	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	P012 Lifelong learning
	Understands the general aspects of electrical system design	3	2		1								1
C02	Selection of main distribution board; Sub distribution board; MCCB, ELCB, MCB and cables forsub circuits	3	2					1					1
03	Understand installation of transformers, Switchgears and protective devices	3	1										2
-	Knowledge of Design of illumination systems	3	2										1
05	Knowledgeoftypes of Substation, Substation equipment and its function.	3	2					1					1
	3: Strong contribution, 2: average contribution, 1: Low contribution												

COURSE: ELECTRIC VEHICLES COURSE CODE: EE447

COURSE OBJECTIVES:

- Knowledge of different types of electric vehicles
- Knowledge of different types of converters used in electric vehicles
- Knowledge of current sensors and speed sensors used in electric vehicles
- Knowledge of charge controllers and batteries used in electric vehicles
- To identify different types of electric vehicles on the basis of performance

COURSE OUTCOMES (CO):

After completion of the course, a student will be able to

COURSE OUTCOME (CO)	DESCRIPTION
C01	Knowledge of different electric vehicles and their environmental impact
CO2	Knowledge of different types of converters used in electric vehicles
CO3	Knowledge of current sensors and speed sensors used in electric vehicles
CO4	Knowledge of charge controllers and batteries used in electric vehicles
CO5	Identify different types of electric vehicles

	СО	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	PO5 Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	PO12 Lifelong learning
C01	Knowledge of different electric vehicles and their environmental impact	2						3					1
C02	Knowledge of different types of converters used in electric vehicles	3					2						1

CO3	Knowledge of current sensors and speed sensors used in electric vehicles		3	2								1
C04	Knowledge of charge controllers and batteries used in electric vehicles	3	1									2
C05	Identify different types of electric vehicles					1		3				2
	3: Strong contribution, 2: average contribution, 1: Low contribution											